S-OPERATIONS IN REPRESENTATION THEORY(1)

BY

EVELYN HUTTERER BOORMAN

ABSTRACT. For G a group and A^G the category of G-objects in a category A, a collection of functors, called "S-operations," is introduced under mild restrictions on A. With certain assumptions on A and with G the symmetric group S_k , one obtains a unigeneration theorem for the Grothendieck ring formed from the isomorphism classes of objects in A^{Sk} . For A = finite-dimensional vector spaces over C, the result says that the representation ring $R(S_k)$ is generated, as a λ -ring, by the canonical k-dimensional permutation representation. When A = finite sets, the S-operations are called " β -operations," and the result says that the Burnside ring $B(S_k)$ is generated by the canonical S_k -set if β -operations are allowed along with addition and multiplication.

I

A. Introduction. In the theory of linear representations of a finite group G, representations can be added, multiplied, and formed into a ring R(G), the representation ring of G. In addition, nth symmetric power operations can be applied to any representation, and these operations can be extended to all elements of R(G). Knutson [5] gives a detailed account of these operations in R(G); Atiyah [1] discusses similar operations in the setting of vector bundles.

This paper attempts to generalize these notions. For any group G, a collection of operations on the category \mathbf{A}^G is defined under mild restrictions on \mathbf{A} . In the case of linear representations of a finite group, these operations are combinations of symmetric powers, but, in general, they include other operations as well. Letting $G = S_k$ and with certain assumptions on \mathbf{A}^{S_k} , one obtains the main result:

COROLLARY II.22. $\langle X_k \rangle = K_0(A^{S_k})$.

Here, $K_0(A^{S_k})$ is the Grothendieck ring formed from the isomorphism classes of objects in A^{S_k} , X_k is a particular object in A^{S_k} , and $\langle X_k \rangle$ is the

Received by the editors November 11, 1973.

AMS (MOS) subject classifications (1970). Primary 20C30, 20J99.

Key words and phrases. Representation ring, Grothendieck ring, λ-ring, Burnside ring.

⁽¹⁾ This research constitutes the author's doctoral thesis written at Columbia University under the direction of Professor Donald Knutson. The author wishes to thank Professor Knutson for his guidance and encouragement.

subring of $K_0(A^{S_k})$ obtained by applying the operations to X_k and taking sums and products of the results. A principal application of this corollary is that $R(S_k)$ is generated by the canonical permutation representation X_k if symmetric powers are included along with addition and multiplication. For the reader familiar with λ -rings, this statement says that $R(S_k)$ is generated by one element as a λ -ring [2], [5].

§§I.B and I.C present some background on the two principal examples, the Burnside and representation rings of a finite group. Chapter II introduces the S-operations and explores their behavior; the main theorem and its Corollary II.22 are proved in §C. In Chapter III, Corollary II.22 is used to prove that $R(S_k) = \langle X_k \rangle$ and $B(S_k) = \langle X_k \rangle$ for all $k \ge 1$. It is also shown that, in general, neither $B(S_k)$ nor $R(S_k)$ is unigenerated as a ring. Moreover, although $B(S_k) = \langle X_k \rangle$, if one allows only symmetric power operations rather than all S-operations, one does not necessarily obtain all of $B(S_k)$.

B. The Burnside ring, B(G). Let G be a finite group. A G-set is a finite set T together with a mapping $G \times T \longrightarrow T$ such that $(g_1g_2)t = g_1(g_2t)$, 1t = t, for all $g_1, g_2 \in G$, $t \in T$. A morphism of G-sets, or G-map, is a set map $f: T \longrightarrow T'$, with T and T' G-sets, such that f(gt) = gf(t) for all $g \in G$, $t \in T$. Two G-sets are said to be isomorphic if there is a G-map between them which is a set isomorphism. G-sets and G-maps clearly form a category.

EXAMPLES I.1. (i) Let G be any finite group, T any finite set. Then T can be given the trivial action gt = t for all $g \in G$, $t \in T$.

- (i') In example (i), if T has only one element, T is denoted by $\mathbf{1}_G$. (Of course, all one-element G-sets are isomorphic.)
- (ii) Let H be a subgroup of a finite group G. Then G/H, the set of left cosets of H in G, is a G-set by the action g(xH) = (gx)H.
- (iii) Let S_n be the symmetric group on the symbols $1, 2, \dots, n$. Let X_n be the set $\{x_1, x_2, \dots, x_n\}$, and let S_n act on X_n by $\alpha x_i = x_{\sigma(i)}$. X_n will be called the canonical S_n -set.
 - (iv) Let G be any finite group. The empty set \emptyset is clearly a G-set.

If T_1 and T_2 are G-sets, then the disjoint union $T_1 \coprod T_2$ is a G-set, under the obvious action. On the other hand, every G-set can be decomposed into its G-orbits:

PROPOSITION I.2. Every G-set $T \neq \emptyset$ is of the form $\prod_{i=1}^n T_i$, where T_i is a transitive G-set. The T_i 's are unique up to order. (A G-set T is transitive if $T \neq \emptyset$ and if given $t_1, t_2 \in T$ there is a $g \in G$ such that $gt_1 = t_2$.)

PROPOSITION I.3. If H is a subgroup of G, then G/H is a transitive

G-set. Conversely, every transitive G-set is of the form G/H for some subgroup H of G.

PROOF. Given g_1H , $g_2H \in G/H$, $(g_1g_2^{-1})g_2H = g_1H$. Hence G/H is a transitive G-set.

Suppose T is a transitive G-set. Let $t \in T$. Then T = Gt. Let G_t be the isotropy group of t, i.e., $G_t = \{g \in G | gt = t\}$. Then the map $T \longrightarrow G/G_t$ defined by $gt \longmapsto gG_t$ is a G-isomorphism \square

PROPOSITION I.4. $G/H \cong G/K$ as G-sets if and only if H and K are conjugate subgroups of G.

PROOF. Suppose H and K are conjugate, i.e., $K = g_1^{-1}Hg_1$ for some $g_1 \in G$. Then the maps

$$\phi: G/H \longrightarrow G/K, \qquad \psi: G/K \longrightarrow G/H,$$
 $gH \longmapsto (gg_1)K, \qquad gK \longmapsto (gg_1^{-1})H,$

are G-maps, and $\phi \circ \psi = 1_{G/K}$, $\psi \circ \phi = 1_{G/H}$. So $G/H \cong G/K$.

Conversely, assume $G/H\cong G/K$. Then there exist G-maps $\phi\colon G/H\to G/K$, $\psi\colon G/K\to G/H$ such that $\phi\circ\psi=1_{G/K}$, $\psi\circ\phi=1_{G/H}$. If $\phi(1H)=g_1K$, then $g_1K=hg_1K$ for all $h\in H$, so $g_1^{-1}Hg_1\subset K$. Similarly $\phi(1K)=g_2H$ gives $g_2^{-1}Kg_2\subset H$. Thus $g_2^{-1}g_1^{-1}Hg_1g_2\subset g_2^{-1}Kg_2\subset H$. Since $g_2^{-1}g_1^{-1}Hg_1g_2$ has the same number of elements as H, $g_2^{-1}g_1^{-1}Hg_1g_2=g_2^{-1}Kg_2=H$. \Box

If T_1 and T_2 are G-sets, then the cartesian product $T_1 \times T_2$ is a G-set under the obvious action. The Burnside ring of G, B(G), consists of all finite formal sums, $\sum_i n_i [T_i]$ $(n_i \in Z)$, of G-sets T_i , modulo the relations

- (i) $[T_1] = [T_2]$ if $T_1 \cong T_2$ as G-sets,
- (ii) $[T_1 \coprod T_2] = [T_1] + [T_2]$.

B(G) is clearly an abelian group; the cartesian product, together with 1_G , gives B(G) the structure of a commutative ring with identity, i.e., $[T_1][T_2] = [T_1 \times T_2]$. Whenever no confusion could arise, the brackets will be omitted. Propositions I.2, I.3, and I.4 imply

PROPOSITION I.5. Let $\{H_{\alpha}\}$ be a set of representatives of the conjugacy classes of subgroups of G. Then B(G) is a free Z-module with basis $\{[G/H_{\alpha}]\}$.

The rest of this section is devoted to defining a set map $h_n \colon B(G) \to B(G)$ for each integer $n \ge 0$. For any G-set T, the set T_G is defined to be the collection of elements of T with the identification $t_1 \sim t_2$ iff $Gt_1 = Gt_2$.

Let T be a G-set. Then $T^n = T \times T \times \cdots \times T$ (n times) is a G-set and also an S_n -set via $\sigma(t_1, \dots, t_n) = (t_{\sigma^{-1}(1)}, \dots, t_{\sigma^{-1}(n)})$ for $\sigma \in S_n$. For each integer $n \ge 1$, let $h_n(T)$ denote $(T^n)_{S_n}$; $h_n(T)$ is thus the nth

symmetric power of T. Since the G- and S_n - actions on T^n commute, $h_n(T) = (T^n)_{S_n}$ is actually a G-set. Clearly h_n sends isomorphic G-sets to isomorphic G-sets. Finally, define $h_0(T)$ to be 1_G for all G-sets T.

If T_1 , T_2 are G-sets, then

$$h_n(T_1 \coprod T_2) = \coprod_{i=0}^n (h_i(T_1) \times h_{n-i}(T_2)).$$

 h_n can now be defined on any element of B(G) by the following construction:

Define

$$H_n: (G\text{-sets}) \times (G\text{-sets}) \longrightarrow B(G)$$

inductively by

$$H_0(T_1, T_2) = 1_G,$$

$$H_n(T_1, T_2) = h_n(T_1) - \sum_{i=1}^{n-1} H_i(T_1, T_2) h_{n-i}(T_2)$$
 for $n > 0$.

Clearly,

$$T_1 \cong U_1, \ T_2 \cong U_2 \Rightarrow H_n(T_1, T_2) = H_n(U_1, U_2) \text{ for all } n \geqslant 0.$$

In addition, an induction argument and the "addition formula" above give

$$H_n(T_1 \coprod T_1, T_2 \coprod T) = H_n(T_1, T_2), \quad H_n(T_1, \emptyset) = h_n(T)$$

for all $n \ge 0$ and G-sets T_1, T_2, T .

An arbitrary element of B(G) looks like $T_1 - T_2$, where T_1 and T_2 are G-sets. If $T_1 - T_2 = U_1 - U_2$, then $T_1 \coprod U_2 \cong U_1 \coprod T_2$, so

$$\begin{split} H_n(T_1, T_2) &= H_n(T_1 \coprod U_2, \ T_2 \coprod U_2) \\ &= H_n(U_1 \coprod T_2, \ T_2 \coprod U_2) = H_n(U_1, U_2). \end{split}$$

Thus $H_n(T_1, T_2)$ depends only on $T_1 - T_2$. Therefore, define $h_n(T_1 - T_2) = H_n(T_1, T_2)$. Then $h_n: B(G) \longrightarrow B(G)$ is a well-defined set map and coincides with its former definition if $T \in B(G)$ is actually a G-set.

C. The representation ring, R(G). Let G be a finite group. A (linear) representation of G (over C) is a finite-dimensional vector space V over C, together with a group homomorphism $\rho: G \longrightarrow \operatorname{Aut} V$. V is called a G-module, and ρ gives an action of G on V. One usually writes

$$V \xrightarrow{g} V$$
, $v \mapsto gv$

instead of

$$V \xrightarrow{\rho(g)} V$$
, $v \mapsto \rho(g)v$.

A G-module map is a linear transformation $f: V \to V'$, with V and V' G-modules, such that f(gv) = gf(v) for all $g \in G$, $v \in V$. Two G-modules are said to be isomorphic if there exists a G-module map between them which is also a vector space isomorphism. G-modules and G-module maps clearly form a category.

EXAMPLES I.6. (i) Let G be a finite group, V a finite-dimensional vector space. V can be given the trivial action gv = v for all $g \in G$, $v \in V$.

- (i') A special case of example (i) is V = 0.
- (i") In example (i), if dim V = 1, V is denoted by 1_G .
- (ii) Let $G = S_n$. Let V have basis $\{v_1, \dots, v_n\}$, and let S_n act by $\sigma v_i = v_{\sigma(i)}$ for $\sigma \in S_n$. This representation V will be called the canonical S_n -module, and denoted X_n .
- (ii') More generally, suppose $\rho\colon G\to S_n$ is a group homomorphism. (ρ is called a permutation representation.) By composing this homomorphism with the one in example (ii), one obtains a linear representation of $G, G \xrightarrow{\rho} S_n \to Aut X_n$. Since a G-set T consisting of n elements is a group homomorphism $G\to S_n$, the concept of G-set is the same as the concept of permutation representation of G.

A G-module V is reducible if V=0 or if there is a subspace W of V such that $GW \subset W$, with $W \neq 0$ and $W \neq V$. If V is not reducible, it is called irreducible.

If V_1 , V_2 are G-modules, then the vector space coproduct $V_1 \coprod V_2$ is a G-module via the obvious action. A G-module V is said to be decomposable if $V \cong V_1 \coprod V_2$ as a G-module, where $V_i \neq 0$. Propositions I.7—I.9 can be found in any book on group representation theory (see [5], [8]).

PROPOSITION I.7 (MASCHKE). If $V \neq 0$ is reducible, then V is decomposable.

PROPOSITION I.8. Every G-module $V \neq 0$ can be expressed as a finite coproduct $V = \coprod_{i=1}^{n} V_i$, where each V_i is an irreducible G-module. The V_i 's are unique (up to order).

PROPOSITION I.9. The number of irreducible representations of G is equal to the number of conjugacy classes of G.

For G-modules V_1 , V_2 , $V_1 \otimes V_2$ is a G-module via $g(v_1 \otimes v_2) = gv_1 \otimes gv_2$. The representation ring of G, R(G), consists of all finite formal sums $\sum_i n_i [V_i]$ $(n_i \in \mathbb{Z})$, of G-modules V_i , modulo the relations

- (i) $[V_1] = [V_2]$ if $V_1 \cong V_2$ as G-modules,
- (ii) $[V_1 \coprod V_2] = [V_1] + [V_2].$

R(G) is clearly an abelian group; the tensor product, together with 1_G , gives

R(G) the structure of a commutative ring with identity, that is $[V_1][V_2] = [V_1 \otimes V_2]$. The brackets will usually be omitted.

Propositions I.8 and I.9 imply

PROPOSITION I.10. Let Irrep G = the set of isomorphism classes of irreducible G-modules. Then R(G) is a free Z-module with basis $\{[V]|V \in Irrep G\}$. The rank of R(G) = the number of conjugacy classes of G.

As in the case of B(G), symmetric power operations $h_n \colon R(G) \to R(G)$ can be introduced. For any G-module V, define the vector space V_G to be V/W, where W is the subspace of V generated by $\{v - gv | v \in V, g \in G\}$. The vector spaces V_G and V^G , where V^G is the subspace of V fixed by G, are seen to be isomorphic by the fact that the linear transformation Y: $V \to V$ defined by

$$Y(v) = \frac{1}{|G|} \sum_{\sigma \in G} gV$$

has image V^G and kernel W. In the case of sets, however, the corresponding objects T_G and T^G are not generally isomorphic.

For any G-module V, $V^{\otimes n} = V \otimes \cdots \otimes V$ (n times) is a G-module and also an S_n -module via $\sigma(v_1 \otimes \cdots \otimes v_n) = v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(n)}$ for $\sigma \in S_n$. For each positive integer n, let $h_n(V)$ denote $(V^{\otimes n})_{S_n}$; $h_n(V)$ is thus the nth symmetric power of V. Since the G- and G- actions on G- commute, G- with G-modules G-modules G-modules G- modules G- modules G- modules G- modules G- modules.

For G-modules V_1 and V_2 ,

$$h_n(V_1 \coprod V_2) = \coprod_{i=0}^n (h_i(V_1) \otimes h_{n-i}(V_2)).$$

As in the G-set case, h_n can be defined on any element $V_1 - V_2$ of R(G) by defining H_n : (G-modules) \times (G-modules) \longrightarrow R(G) inductively by

$$H_0(V_1, V_2) = 1_G,$$

$$H_n(V_1, V_2) = h_n(V_1) - \sum_{i=0}^{n-1} H_i(V_1, V_2) h_{n-i}(V_2)$$
 for $n > 0$,

and then using the "addition formula" above to show that $H_n(V_1, V_2)$ depends only on $V_1 - V_2$.

G-sets and G-modules are examples of the category discussed in Chapter II. There, a family of functors, called S-operations, is defined. In the case of

G-modules, these S-operations turn out to be sums and products of symmetric powers h_n . In fact, by applying these operations to the canonical S_k -module X_k , one can obtain every element in $R(S_k)$ (see III, §A).

In the case of G-sets, however, the S-operations include more than symmetric powers. In III, §B, one sees that applying sums and products of symmetric power operations h_n to the canonical S_k -set X_k does not always give all of $B(S_k)$, whereas applying all the S-operations to X_k does.

II. S-OPERATIONS

A. The category A^G and functors $\phi_{W_n} \colon A^G \to A^G$. Let G be a group, and A a category. A G-object in A is an object A in A, together with morphisms $A \xrightarrow{\rho_g} A$ for all $g \in G$, satisfying $\rho_{gh} = \rho_g \circ \rho_h$, $\rho_1 = 1_A$. $A \xrightarrow{\rho_g} A$ is usually written $A \xrightarrow{g} A$.

A G-map, or G-morphism, is a morphism $f: A \longrightarrow B$ in A, with A and B G-objects, such that fg = gf for all $g \in G$. The category of G-objects and G-maps in A is denoted A^G .

The aim of this section is to define a collection of functors from $\mathbf{A}^{\mathbf{G}}$ to $\mathbf{A}^{\mathbf{G}}$, under certain assumptions on \mathbf{A} . The reader is referred to [6] for a reference on category theory.

Recall that given two morphisms $\alpha, \beta: A \longrightarrow B$, $\mu: B \longrightarrow K$ is a coequalizer for α and β if $\mu\alpha = \mu\beta$, and if whenever $\mu': B \longrightarrow K'$ satisfies $\mu'\alpha = \mu'\beta$, then there is a unique morphism $\gamma: K \longrightarrow K'$ such that $\gamma\mu = \mu'$. Given two morphisms $f_1: A \longrightarrow B_1$, $f_2: A \longrightarrow B_2$, a commutative diagram

$$A \xrightarrow{f_2} B_2$$

$$f_1 \downarrow \qquad \qquad \downarrow \mu_2$$

$$B_1 \xrightarrow{\mu_1} P$$

is called a pushout for f_1 and f_2 if for every commutative diagram

$$A \xrightarrow{f_2} B_2$$

$$f_1 \downarrow \qquad \qquad \downarrow \mu'_2$$

$$B_1 \xrightarrow{\mu'_1} P'$$

there is a unique morphism γ : $P \rightarrow P'$ such that $\mu'_1 = \gamma u_1$ and $\mu'_2 = \gamma u_2$.

LEMMA II.1. Let A be a category with coequalizers and finite coproducts. Then A has pushouts.

PROOF. Consider

$$A \xrightarrow{f_2} B_2$$

$$f_1 \downarrow \\ B_1$$

The coproduct $B_1 \coprod B_2$, together with the canonical morphisms $i_j \colon B_j \to B_1 \coprod B_2$, j=1,2, gives morphisms $i_j \circ f_j \colon A \to B_1 \coprod B_2$, j=1,2. Let $\mu \colon B_1 \coprod B_2 \to K$ be the coequalizer for $i_1 \circ f_1$ and $i_2 \circ f_2$. Then $\mu \circ (i_1 \circ f_1) = \mu \circ (i_2 \circ f_2)$ gives a commutative diagram

$$\begin{array}{c}
A \xrightarrow{f_2} B_2 \\
f_1 \downarrow & \downarrow \mu \circ i_2 \\
B_1 \xrightarrow{\mu \circ i_1} K
\end{array}$$

The fact that this diagram is actually a pushout follows from the definitions of coproduct and coequalizer. \Box

Given a family $\{\mu_i\colon A\to A_i\}_{i\in I}$ of epimorphisms, $\mu\colon A\to A'$ is the cointersection of the family if for each $i\in I$ there exist morphisms $\nu_i\colon A_i\to A'$ such that $\mu=\nu_i\mu_i$, and if every morphism $A\to B$ which factors through each μ_i factors uniquely through μ .

LEMMA II.2. If A has pushouts, then A has finite cointersections.

PROOF. It suffices to show existence for a family of two epimorphisms μ_1 : $A \longrightarrow A_1$, μ_2 : $A \longrightarrow A_2$. Let

$$A \xrightarrow{\mu_2} A_2$$

$$\mu_1 \downarrow \qquad \qquad \downarrow \nu_2$$

$$A_1 \xrightarrow{\nu_1} P$$

be the pushout for μ_1 and μ_2 . Then $v_1\mu_1 = v_2\mu_2$: $A \longrightarrow P$ is the cointersection of μ_1 and μ_2 by the definition of pushout.

Let $F_G: A \to A^G$ be the functor which sends $A \in A$ to $A \in A^G$ by letting $A \xrightarrow{g} A$ be $A \xrightarrow{1_A} A$ for all $g \in G$. Let $V \in A^G$. A G-orbit space of V is a pair (O, π) , where $O \in A$ and $\pi \in \operatorname{Mor}_{AG}(V, F_G(O))$, such that whenever $X \in A$ and $f \in \operatorname{Mor}_{AG}(V, F_G(X))$ there is a unique $\phi \in \operatorname{Mor}_A(O, X)$ such that $F_G(\phi) \circ \pi = f$. When such an O exists, it is of course unique up to natural isomorphism and is denoted V_G .

PROPOSITION II.3. Let G be a finite group and let A have coequalizers and finite coproducts. Then (V_G, π) exists for all $V \in A^G$.

PROOF. For each pair of distinct elements $g_i, g_j \in G$, let $\mu_{g_i,g_j} \colon V \to K_{g_i,g_j}$ be a coequalizer for the morphisms $g_i, g_j \colon V \to V$. Each μ_{g_i,g_j} is an epimorphism since every coequalizer is. Let $\pi \colon V \to O$ be the cointersection (exists by Lemmas II.1, II.2) of the finite family $\{\mu_{g_i,g_j} \colon V \to K_{g_i,g_j}\}_{g_i \neq g_j}$ in A. This construction gives (V_G, π) :

For each $g \in G$, $\mu_{g,1}g = \mu_{g,1}1_V = \mu_{g,1}$, so $\pi g = \pi$ for all $g \in G$. Hence $\pi \in \operatorname{Mor}_{\mathbf{AG}}(V, F_G(O))$. If $f \in \operatorname{Mor}_{\mathbf{AG}}(V, F_G(X))$, then $fg_i = fg_j$ for all g_i , $g_j \in G$, so f factors through each μ_{g_i,g_j} . Thus there is a unique $\phi \in \operatorname{Mor}_{\mathbf{A}}(O, X)$ such that $\phi \circ \pi = f.\Box$

REMARK II.4. Proposition II.3 says there is a functor ()_G: $A^G \to A$ left adjoint to F_G : $A \to A^G$, i.e., $\operatorname{Mor}_{AG}(V, F_G(X)) \approx \operatorname{Mor}_{A}(V_G, X)$, natural in arguments V and X.

For each integer $n \ge 1$ and each $W_n \in A^{S_n}$ (S_n is the symmetric group), a functor $\phi_{W_n} \colon A^G \to A^G$ will be defined. To do so, assume that A has not only coequalizers and finite coproducts but also a "tensor product" 1, that is, a functor 1: $A \times A \to A$ which is coherently associative and commutative (see [7, Chapter I]), and which distributes with the coproduct. This insures natural isomorphisms

$$(A_1 \perp A_2) \perp A_3 \approx A_1 \perp (A_2 \perp A_3),$$

 $A_1 \perp A_2 \approx A_2 \perp A_1,$
 $A_1 \perp (A_2 \parallel A_3) \approx (A_1 \perp A_2) \parallel (A_1 \perp A_3),$

such that isomorphisms between products of several factors, obtained by successively applying the above, are the same.

Fix $W_n \in A^{S_n}$. Let $T \in A$ and let $T^{\perp n} = T \perp T \perp \cdots \perp T$ (n times). $T^{\perp n} \in A^{S_n}$ via the natural isomorphisms which permute its factors. Since \bot is a functor $A \times A \to A$ it induces a functor \bot : $A^G \times A^G \to A^G$ for any group G; that is if $A \xrightarrow{g} A, B \xrightarrow{g} B$, then $A \perp B \xrightarrow{g \perp g} A \perp B$ gives $A \perp B$ a well-defined G-action by the functoriality of \bot . Hence $W_n \perp T^{\perp n} \in A^{S_n}$. Defining $\phi_{W_n}(T)$ to be $(W_n \perp T^{\perp n})_{S_n}$, one obtains a functor ϕ_{W_n} : $A \to A$. (For f: $T \to T'$, $\phi_{W_n}(f)$: $(W_n \perp T^n)_{S_n} \to (W_n \perp T^n)_{S_n}$ is the obvious map.)

If $T \in A^G$, T comes with morphisms $T \xrightarrow{g} T$ for all $g \in G$, which induce morphisms

$$\phi_{W_n}(T) \xrightarrow{\phi_{W_n}(g)} \phi_{W_n}(T)$$

for all $g \in G$. Since ϕ_{W_n} is a functor, the maps $\phi_{W_n}(g)$ define a G-action on $\phi_{W_n}(T)$. Thus one has a functor $\phi_{W_n} \colon A^G \to A^G$ for any group G.

"In conclusion, then, if G is any group and if A has coequalizers, finite coproducts, and a "tensor product" L, then for each positive integer and each $W_n \in A^{S_n}$, one has a functor $\phi_{W_n} \colon A^G \to A^G$ defined by $\phi_{W_n}(T) = (W_n \perp T^{\perp n})_{S_n}$.

B. The behavior of the functors ϕ_{W_n} . The purpose of this section is to investigate the behavior of the functors ϕ_{W_n} . To do so, one first introduces induced objects.

Suppose $H \subset G$ are groups. $A \in A^G$ may be viewed as an H-object via the inclusion $H \hookrightarrow G$, giving rise to a functor $\operatorname{Res}_H^G \colon A^G \to A^H$. Let $W \in A^H$. An induced object of W is a pair (V, ψ) , where $V \in A^G$ and $\psi \in \operatorname{Mor}_{A^H}(W, \operatorname{Res}_H^G V)$ such that whenever $X \in A^G$ and $f \in \operatorname{Mor}_{A^H}(W, \operatorname{Res}_H^G X)$ there is a unique $\phi \in \operatorname{Mor}_{A^G}(V, X)$ satisfying $(\operatorname{Res}_H^G \phi) \circ \psi = f$. When such a V exists, it is unique up to natural isomorphism and is denoted $\operatorname{Ind}_H^G W$.

PROPOSITION II.5. Let $H \subset G$ be finite groups and let A have coequalizers and finite coproducts. Then $(\operatorname{Ind}_{H}^{G}W, \psi)$ exists for all $W \in A^{H}$.

PROOF. Let $W \in A^H$. Form the coproduct of W with itself |G| times to obtain the object $\coprod_{x \in G} W_x$ in A, which is in A^G via the maps $\coprod W_x \xrightarrow{*g} \coprod W_x$, for all $g \in G$, which permute the factors; more precisely, *g is induced by the maps $*g_x \colon W_x \longrightarrow W_{gx} \hookrightarrow \coprod_{x \in G} W_x$, where the first morphism is 1_W and the second is the canonical map associated with the coproduct. In the future, $W_x \xrightarrow{1_W} W_y$ will be denoted 1_x^y . For $h \in H$, let $\coprod W \xrightarrow{h^*} \coprod W_x$ be the map induced from maps

$$h_x^*: W_x \xrightarrow{1_x^{xh}} W_{xh} \hookrightarrow \coprod W_x,$$

and let $\coprod W_x \xrightarrow{h} \coprod W_x$ be induced from the maps $h_x \colon W_x \xrightarrow{h} W_x \hookrightarrow \coprod W_x$, where the first map is just the action of H on W.

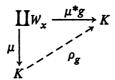
Observe that $h^{**}g = *gh^*$ and h(*g) = *gh for all $g \in G$, $h \in H$. For $h \in H$, let $\mu_h \colon \coprod W_x \longrightarrow K_h$ be the coequalizer of h^* and h. Since $_{\theta}(\mu_h^*g)h^*$ = $\mu_h h^{**}g = (\mu_h h)^*g = (\mu_h^*g)h$ for $g \in G$, there is a unique map $K_h \xrightarrow{g} K_h$ such that the triangle

$$\coprod_{\mu_h \downarrow \qquad \qquad \mu_g^* g \atop K_h} K_h$$

commutes. One thus obtains a map θ_g for each $g \in G$. The uniqueness of each

 θ_g implies $\theta_1 = 1_{K_h}$ and $\theta_{g_1g_2} = \theta_{g_1}\theta_{g_2}$. Hence $K_h \in A^G$ and μ_h is a G-map.

Let $\mu\colon \coprod W_x \longrightarrow K$ be the cointersection (exists by Lemmas II.1, II.2) of the finite family of epimorphisms $\{\mu_h\}_{h\in H}$ in A. Since μ factors through each μ_h , μ^*g does also; hence for each $g\in G$, there is a unique map $K \xrightarrow{\rho_g} K$ such that the triangle



commutes. The uniqueness of each ρ_g makes K a G-object and therefore μ a G-map.

Let $\psi \colon W \to \operatorname{Res}_H^G K$ be the map $\mu_1 \colon W_1 \to K$ which comes from $\mu \colon \coprod_{x \in G} W_x \to K$. (Here and elsewhere, W is identified with W_1 .) $K = \operatorname{Ind}_H^G W$ by the following argument:

To show that ψ is an *H*-map, one must show that $\rho_h\psi=\psi h$. The last commutative triangle and the definition of μ give $\rho_h\psi=\rho_h\mu_1=\mu^*h_1=\mu h_1=\mu_h=\psi h$.

Suppose $f: W \to \operatorname{Res}_H^G X$ is an H-map. One can show that there is a unique G-map $\tau: \coprod W_x \to X$ such that the triangle

$$\begin{array}{c}
W_1 & \xrightarrow{f} X \\
\downarrow & \downarrow & \tau \\
\coprod W_{\tau} & & \end{array}$$

commutes, as follows:

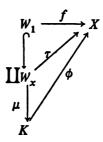
If such a τ exists, then for each $x \in G$, the square

$$\begin{array}{c}
W_1 & \xrightarrow{f} X \\
 *x_1 \downarrow & \downarrow x \\
 & \coprod W_x \xrightarrow{x} X
\end{array}$$

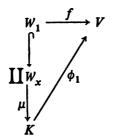
commutes. Hence $\tau_x = x f 1_x^1$ for all $x \in G$. Thus τ is unique. For existence, define τ by $\tau_x = x f 1_x^1$ for all $x \in G$.

Moreover, $\tau h^* = \tau h$ for all $h \in H$ since $(\tau h^*)_x = \tau_{xh} 1_x^{xh} = xhf 1_{xh} 1_x^{xh}$ = $xhf 1_x^1$, $(\tau h)_x = \tau_x h = xf 1_x^1 h = xfh 1_x^1$, and f is an H-map. Hence τ factors through μ_h for all $h \in H$. It follows that there is a unique $\phi \colon K \longrightarrow X$ satisfying $\tau = \phi \mu$. By the fact that μ and τ are G-maps and by the uniqueness of ϕ , ϕ is itself a G-map: $(g\phi \rho_{g-1})\mu = g\phi \mu^* g^{-1} = g\tau g^{-1} = gg^{-1} \tau = \tau \Rightarrow g\phi \rho_{g-1} = \phi$, or, $g\phi = \phi \rho_g$.

The commutativity of the two small triangles in the figure



implies the commutativity of the large triangle. Hence ϕ is a G-map satisfying $(\operatorname{Res}_H^G \phi) \circ \psi = f$. In addition, if ϕ_1 makes the diagram



commute, then $\phi_1 \mu = \tau$ by uniqueness of τ , and so $\phi_1 = \phi$ by uniqueness of $\emptyset \square$

REMARK II.6. Proposition II.5 says there is a functor $\operatorname{Ind}_H^G\colon A^H\to A^G$ left adjoint to $\operatorname{Res}_H^G\colon A^G\to A^H$, i.e., $\operatorname{Mor}_{A^H}(W,\operatorname{Res}_H^GV)\approx \operatorname{Mor}_{A^G}(\operatorname{Ind}_H^GW,V)$, natural in arguments W and V.

PROPOSITION II.7. Let G be a group and A a category with finite coproducts. Suppose $V \in A^G$ and $V = \coprod_{i=1}^n W_i$ as an object in A. Assume G permutes the W_i 's transitively, that is, each $g_i \colon W_i \to \coprod_{i=1}^n W_i$ looks like $W_i \to W_j \hookrightarrow \coprod_{i=1}^n W_i$ for some j and some morphism $W_i \to W_j$, and given any i, j, there is a $g \in G$ such that $g_i \colon W_i \to W_j \hookrightarrow \coprod_{i=1}^n W_i$.

Let W_{i_0} be one of the W_i 's and let H be its isotropy group, i.e., $H = \{g \in G | g_{i_0} \colon W_{i_0} \longrightarrow W_{i_0} \hookrightarrow \coprod W_i \}$. Then as an object in A^G , $V = \operatorname{Ind}_H^G W_{i_0}$.

PROOF. If g_i : $W_i o W_j \hookrightarrow \coprod W_i$, denote the map $W_i \to W_j$ by g_i^j . Since $gg^{-1} = g^{-1}g = 1_v$, g_i : $W_i \to W_j \hookrightarrow \coprod W_i$ implies g_j^{-1} : $W_j \to W_i \hookrightarrow \coprod W_i$, and $g_i^j(g^{-1})_j^i = 1_{W_j}$, $(g^{-1})_j^i g_i^j = 1_{W_i}$.

Let $\psi \colon W_{i_0} \to \operatorname{Res}_H^G V$ be the canonical map $W_{i_0} \hookrightarrow \coprod_{i=1}^n W_i$. ψ is clearly an H-map. To show $V = \operatorname{Ind}_H^G W_{i_0}$, one need only show that V satisfies the appropriate universal property.

Suppose $f \in \operatorname{Mor}_{\mathbf{AH}}(W_{i_0}, \operatorname{Res}_H^G X)$. If there is a G-map $\phi \colon V \to X$ such that $(\operatorname{Res}_H^G \phi) \circ \psi = f$, then for each $g \in G$ there is a commutative diagram

$$\begin{array}{ccc}
W_{i_0} & \xrightarrow{f} X \\
\downarrow^g & \downarrow^g X
\end{array}$$

$$\coprod W_i \xrightarrow{\phi} X$$

Given i, let $g \in G$ be such that $g_{i_0} \colon W_{i_0} \longrightarrow W_i \hookrightarrow \coprod W_i$. Then $\phi_i = \phi g_{i_0}(g^{-1})_i^{i_0} = gf(g^{-1})_i^{i_0}$. Thus such a ϕ is unique.

To show existence, define ϕ by $\phi_i = gf(g^{-1})^{i_0}_i$, where $g \in G$ such that $g_{i_0} \colon W_{i_0} \to W_i \hookrightarrow \coprod W_i$. ϕ is well defined: If \widetilde{g} , $g \colon W_{i_0} \to W_i \hookrightarrow \coprod W_i$, then $\widetilde{g}^{-1}g \in H$, so that $\widetilde{g}^{-1}gf = f(\widetilde{g}^{-1}g)^{i_0}_{i_0} = f(\widetilde{g}^{-1})^{i_0}_i g^i_{i_0}$; hence $gf(g^{-1})^{i_0}_i = \widetilde{g}f(\widetilde{g}^{-1})^{i_0}_i$.

LEMMA II.8. Let A have coequalizers and finite coproducts, and let G be a finite group. Then

$$(A \coprod B)_G \approx A_G \coprod B_G$$

natural in arguments A and B.

PROOF. There is a natural isomorphism

$$\operatorname{Mor}_{\mathbf{A}}((A \coprod B)_G, X) \approx \operatorname{Mor}_{\mathbf{A} G}(A \coprod B, \mathcal{F}_G(X))$$

(Remark II.4). Since adjoints are unique, one need only show

$$\operatorname{Mor}_{\mathbf{A}}(A_G \coprod B_G, X) \approx \operatorname{Mor}_{\mathbf{A}, G}(A \coprod B, \mathcal{F}_G(X)).$$

But

$$\operatorname{Mor}_{\mathbf{A}}(A_G \coprod B_G, X) \approx \operatorname{Mor}_{\mathbf{A}}(A_G, X) \times \operatorname{Mor}_{\mathbf{A}}(B_G, X)$$

$$\approx \operatorname{Mor}_{\mathbf{A},\mathbf{G}}(A,\ F_G(X)) \times \operatorname{Mor}_{\mathbf{A},\mathbf{G}}(B,\ F_G(X)) \approx \operatorname{Mor}_{\mathbf{A},\mathbf{G}}(A \amalg B,\ F_G(X)).$$

THEOREM II.9. Let G be a group, and let A have finite coproducts, coequalizers, and a "tensor product" 1. Then if W_n , $W'_n \in A^{Sn}$,

$$\phi_{W_n \coprod W'_n}(T) = \phi_{W_n}(T) \coprod \phi_{W'_n}(T)$$

for all $T \in A^G$.

Proof.

$$\phi_{W_n \coprod W'_n}(T) = ((W_n \coprod W'_n) \perp T^{\perp n})_{S_n}$$

$$\approx ((W_n \perp T^{\perp n}) \coprod (W'_n \perp T^{\perp n}))_{S_n}$$

$$\approx (W_n \perp T^{\perp n})_{S_n} \coprod (W'_n \coprod T^{\perp n})_{S_n} \quad \text{(by Lemma II.8)}$$

$$= \phi_{W_n}(T) \coprod \phi_{W'_n}(T) \square$$

LEMMA II.10. Let A have finite coproducts and coequalizers, and let

 $K \subset H \subset G$ be finite groups. Let $U \in A^K$ and $W, W' \in A^H$. Then

- (i) $\operatorname{Ind}_H^G(W \coprod W') \approx \operatorname{Ind}_H^GW \coprod \operatorname{Ind}_H^GW'$,
- (ii) $\operatorname{Ind}_{H}^{G}(\operatorname{Ind}_{K}^{H}U) \approx \operatorname{Ind}_{K}^{G}U$,
- (iii) $(\operatorname{Ind}_{H}^{G}W)_{G} \approx W_{H}$.

All the above isomorphisms are natural.

- PROOF. (i) The result follows from the adjointness of Res_H^G and Ind_H^G (Remark II.6) and an argument analogous to the one for Lemma II.8.
- (ii) This result follows from the uniqueness of adjoints and the obvious fact that $\operatorname{Res}_K^H(\operatorname{Res}_H^G V) \approx \operatorname{Res}_K^G V$.
- (iii) The proof, which is similar to the preceding one, uses the adjointness of Res_H^G and Ind_H^G and of F_G and ()_G, and the fact that $\operatorname{Res}_H^G(F_G(X)) \approx F_H(X).\square$

LEMMA II.11 (FROBENIUS RECIPROCITY). Let $H \subset G$ be finite groups, and let A have finite coproducts, coequalizers, and a "tensor product" 1. Assume there is a functor Hom: $A^{\circ} \times A \longrightarrow A$ such that

$$Mor_A(A \perp B, C) \approx Mor_A(A, Hom(B, C)),$$

natural in A, B, C. Then for $W \in A^H$, $V \in A^G$,

$$(\operatorname{Ind}_H^G W) \perp V \approx \operatorname{Ind}_H^G (W \perp \operatorname{Res}_H^G V).$$

PROOF. The functoriality of Hom: $A^{\circ} \times A \longrightarrow A$ induces the functor Hom: $(A^{G})^{\circ} \times A^{G} \longrightarrow A^{G}$, and clearly

$$\operatorname{Res}_{H}^{G}\operatorname{Hom}(V, X) \approx \operatorname{Hom}(\operatorname{Res}_{H}^{G}V, \operatorname{Res}_{H}^{G}X).$$

The lemma now follows from the standard argument using uniqueness of adjoints. \Box

The following theorem gives a useful simplification for some of the functors ϕ_{W_n} in the special case of the existence of an object 1 in A such that $A \perp 1 \approx A$, natural and coherent in the sense of II, §A. The object $F_G(1) \in A^G$ will be denoted 1_G , or simply 1.

THEOREM II.12. Let G be a group, let A have an object 1 and be as in Lemma II.11, and let Hom exist Let $H \subset S_n$, $T \in A^G$, and $W_n = \operatorname{Ind}_H^{S_n} 1$. Then $\phi_{W_n}(T) = (\operatorname{Res}_H^{S_n}(T^{\perp n}))_H$.

PROOF.

$$\begin{split} \phi_{W_n}(T) &= ((\operatorname{Ind}_H^{S_n} 1) \perp T^{\perp n})_{S_n} \\ &\approx (\operatorname{Ind}_H^{S_n} (1 \perp \operatorname{Res}_H^{S_n} (T^{\perp n})))_{S_n} \quad \text{(by Lemma II.11)} \\ &\approx (\operatorname{Ind}_H^{S_n} (\operatorname{Res}_H^{S_n} (T^{\perp n})))_{S_n} \approx (\operatorname{Res}_H^{S_n} (T^{\perp n}))_H \quad \text{(by Lemma II.10).} \end{split}$$

EXAMPLES II.13. (i) If $W_n = \operatorname{Ind}_1^{S_n} 1$, then $\phi_{W_n}(T) = (\operatorname{Res}_1^{S_n}(T^{\perp n}))_1 = T^{\perp n}$.

(ii) If $W_n = \operatorname{Ind}_{S_n}^{S_n} 1$, then $\phi_{W_n}(T) = (\operatorname{Res}_{S_n}^{S_n}(T^{\perp n}))_{S_n} = (T^{\perp n})_{S_n} =$ the *n*th symmetric power of T.

If G and H are groups, $A \in A^G$, $B \in A^H$, then the morphisms $A \xrightarrow{g} A$, $B \xrightarrow{h} B$ induce the morphism $A \perp B \xrightarrow{g \perp h} A \perp B$, thereby making $A \perp B \in A^{G \times H}$ ($G \times H$ is the direct product of G and H). In this setting, one has the following lemma:

LEMMA II.14. Let G and H be finite groups, and let A have finite coproducts, coequalizers, and a "tensor product" \bot . Assume there is a functor Hom, as in Lemma II.11. If $A \in A^G$, $B \in A^H$, then $(A \bot B)_{G \times H} \approx A_G \bot B_H$.

PROOF. Because of the uniqueness of adjoints, one need only show $\operatorname{Mor}_{AG \times H}(A \perp B, F_{G \times H}(X)) \approx \operatorname{Mor}_{A}(A_G \perp B_H, X).$

This follows from the following chain of natural isomorphisms, each easily verifiable:

$$\operatorname{Mor}_{\mathbf{A}^{G} \times \mathbf{H}}(A \perp B, \quad G \times H(X))$$

$$\approx \operatorname{Mor}_{(\mathbf{A}^{\mathbf{H}})^{\mathbf{G}}}(F_{H}(A) \perp F_{G}(B), F_{G}(F_{H}(X)))$$

$$\approx \operatorname{Mor}_{(\mathbf{A}^{\mathbf{H}})^{\mathbf{G}}}(F_{H}(A), \operatorname{Hom}(F_{G}(B), F_{G}(F_{H}(X))))$$

$$\approx \operatorname{Mor}_{(\mathbf{A}^{\mathbf{H}})^{\mathbf{G}}}(F_{H}(A), F_{G}(\operatorname{Hom}(B, F_{H}(X))))$$

$$\approx \operatorname{Mor}_{\mathbf{A}^{\mathbf{H}}}((F_{H}(A))_{G}, \operatorname{Hom}(B, F_{H}(X)))$$

$$\approx \operatorname{Mor}_{\mathbf{A}^{\mathbf{H}}}(F_{H}(A_{G}), \operatorname{Hom}(B, F_{H}(X)))$$

$$\approx \operatorname{Mor}_{\mathbf{A}^{\mathbf{H}}}(F_{H}(A_{G}) \perp B, F_{H}(X))$$

$$\approx \operatorname{Mor}_{\mathbf{A}^{\mathbf{H}}}(B \perp F_{H}(A_{G}), F_{H}(X))$$

$$\approx \operatorname{Mor}_{\mathbf{A}^{\mathbf{H}}}(B \operatorname{Hom}(^{\mathsf{T}}_{H}(A_{G}), F_{H}(X)))$$

$$\approx \operatorname{Mor}_{\mathbf{A}^{\mathbf{H}}}(B, F_{H}(\operatorname{Hom}(A_{G}, X))) \approx \operatorname{Mor}_{\mathbf{A}}(B_{H}, \operatorname{Hom}(A_{G}, X))$$

$$\approx \operatorname{Mor}_{\mathbf{A}}(B_{H} \perp A_{G}, X) \approx \operatorname{Mor}_{\mathbf{A}}(A_{G} \perp B_{H}, X).\square$$

In the next theorem, $S_n \times S_m$ is viewed as a subgroup of S_{n+m} by viewing S_n as permuting the symbols $1, 2, \dots, n$, S_m the symbols n+1, $n+2, \dots, n+m$, and S_{n+m} the symbols $1, 2, \dots, n+m$.

THEOREM II.15. Let G be a group, let A have finite coproducts, coequal-

izers, a "tensor product" \perp , and an object 1. Assume there is a functor Hom as in Lemma II.11. Let $W_n \in A^{S_n}$, $W_m \in A^{S_m}$, and $T \in A^G$. If $W_{n+m} = \operatorname{Ind}_{S_n \times S_m}^{S_{n+m}} W_n \perp W_m$, then $\phi_{W_{n+m}}(T) = \phi_{W_n}(T) \perp \phi_{W_m}(T)$.

PROOF

$$\phi_{W_{n+m}}(T) = ((\operatorname{Ind}_{S_n \times S_m}^{S_{n+m}} W_n \perp W_m) \perp T^{\perp n+m})_{S_{n+m}}$$

$$\approx (\operatorname{Ind}_{S_n \times S_m}^{S_{n+m}} (W_n \perp W_m \perp \operatorname{Res}_{S_n \times S_m}^{S_{n+m}} T^{\perp n+m}))_{S_{n+m}} \text{ (by Lemma II.11)}$$

$$\approx (W_n \perp W_m \perp \operatorname{Res}_{S_n \times S_m}^{S_{n+m}} T^{\perp n+m})_{S_n \times S_m} \text{ (by Lemma II.10)}$$

$$\approx ((W_n \perp T^{\perp n}) \perp (W_m \perp T^{\perp m}))_{S_n \times S_m}$$

$$\approx (W_n \perp T^{\perp n})_{S_n} \perp (W_m \perp T^{\perp m})_{S_m} \text{ (by Lemma II.14)}$$

$$= \phi_{W_n}(T) \perp \phi_{W_m}(T).\square$$

- C. The main theorem and corollary. Let G be a group and A have finite coproducts, a "tensor product" \bot , and an object 1. Define the Grothen-dieck ring $K_0(A^G)$ to consist of all finite formal sums $\Sigma_i n_i[T_i]$ $(n_i \in \mathbb{Z})$ of G-objects T_i in A, modulo the relations
 - (i) $[T_1] = [T_2]$ if $T_1 \cong T_2$ as G-objects,
 - (ii) $[T_1 \coprod T_2] = [T_1] + [T_2].$

Clearly, $K_0(A^G)$ is an abelian group; the "tensor product" 1, together with the object $1 \in A^G$, gives $K_0(A^G)$ the structure of a commutative ring with identity, i.e. $[T_1][T_2] = [T_1 \perp T_2]$. When the meaning is clear, brackets will be omitted, e.g., $[T_1] - [T_2]$ will appear as $T_1 - T_2$.

EXAMPLES II.16. (i) Let G be a finite group and A the category of finite sets. Then $A^G = G$ -sets. Let \bot be the cartesian product, and A be any one-element G-set. Then $K_0(A^G)$ is the Burnside ring of G, B(G). (See I, §B.)

(ii) Let G be a finite group and A the category of finite-dimensional vector spaces over C. Then $A^G = G$ -modules. Let I be the tensor product O, and O be the one-dimensional O-module with trivial O-action. Then O0 is the representation ring of O1, O2 (see O3, O4).

REMARK II.17. In the above examples, $[T_1] = [T_2]$ implies $T_1 \cong T_2$ as G-objects (see I, §B, §C). This is not the case in general; in particular, if A is the category of vector bundles over a space X, then [E] = [F] implies only that $E \oplus n \cong F \oplus n$, where n is the trivial bundle of dimension n [3, Appendix].

Let $H \subset G$ be finite groups. Let A have finite coproducts, coequalizers, a "tensor product" \bot , and an object 1. $P(A^G)$ is defined to be the subring of $K_0(A^G)$ generated by $\{\operatorname{Ind}_H^G 1 | H \text{ a subgroup of } G\}$.

PROPOSITION II.18. Let $H \subset G$ be finite groups. If $W = 1_H$, then $\operatorname{Ind}_H^G W = \coprod_{\bar{x} \in G/H} 1_{\bar{x}}$ with G-action given by

$$g: 1_{\overline{x}} \xrightarrow{1_1} 1_{\overline{gx}} \longrightarrow \coprod 1_{\overline{x}}.$$

PROOF. Let $\psi\colon 1_{\overline{1}}\hookrightarrow \amalg 1_{\overline{x}}$. One need only show that $(\amalg 1_{\overline{x}},\psi)$ satisfies the appropriate universal property. Clearly, $\psi\colon 1_{\overline{1}}\to \operatorname{Res}_H^G(\amalg 1_{\overline{x}})$ is an H-map. If $f\in \operatorname{Mor}_{\operatorname{\mathbf{AH}}}(1_H,\operatorname{Res}_H^GX)$, there is a unique $\phi\in \operatorname{Mor}_{\operatorname{\mathbf{AG}}}(\amalg 1_{\overline{x}},X)$ such that $(\operatorname{Res}_H^G\phi)\circ\psi=f$, namely $\phi_{\overline{x}}xf1_{\overline{x}}^{\overline{1}}$ for all $\overline{x}\in G/H.\square$

PROPOSITION II.19. Every element in $P(A^G)$ is of the form $\Sigma_i n_i \operatorname{Ind}_{H_i}^G 1$, where $n_i \in \mathbb{Z}$ and H_i is a subgroup of G.

Proof.

$$(\operatorname{Ind}_{H}^{G}1) \perp (\operatorname{Ind}_{K}^{G}1) \approx \left(\coprod_{\overline{x} \in G/H} 1_{\overline{x}} \right) \perp \left(\coprod_{\overline{y} \in G/K} 1_{\overline{y}} \right) \quad \text{(by Proposition II.18)}$$

$$\approx \coprod_{\overline{x}, \overline{y}} (1_{\overline{x}} \perp 1_{\overline{y}})$$

$$\approx \coprod_{\overline{x}, \overline{y}} 1_{(\overline{x}, \overline{y})} \approx \coprod_{\substack{G \text{-orbits } \alpha \\ \text{of } G/H \times G/K}} \left(\coprod_{(\overline{x}, \overline{y}) \in \alpha} 1_{(\overline{x}, \overline{y})} \right)$$

$$\approx \coprod_{G \text{-orbits } \alpha} \operatorname{Ind}_{H_{\alpha}}^{G}1 \quad \text{(by Proposition II.7).} \square$$

The canonical S_k -object in A, denoted X_k , is defined to be $\operatorname{Ind}_{S_1 \times S_{k-1}}^{S_k} 1$. REMARK II.20. From Proposition II.18, it follows that

$$X_k = \coprod_{\bar{\sigma} \in S_k / (S_1 \times S_{k-1})} 1_{\bar{\sigma}}.$$

Since $\overline{\sigma} = \overline{\tau}$ in $S_k/(S_1 \times S_{k-1})$ iff $\tau(1) = \sigma(1)$, each $S_1 \times S_{k-1}$ -orbit of S_k consists of precisely those $\sigma \in S_k$ which send 1 to the same symbol j. Hence $X_k = \coprod_{j=1}^k 1_j$, where $\sigma \in S_k$ acts by

$$1_j \xrightarrow{1_1} 1_{\sigma(j)} \hookrightarrow \coprod 1_j.$$

For examples, see I.1(iii) and I.6(ii).

Let G be a group, and A have finite coproducts, coequalizers, a "tensor product" A, and object 1. Let $\phi_0 \colon A^G \to A^G$ be the functor sending $A \in A$

 A^G to 1_G . ϕ_0 and the functors ϕ_{W_n} arising from all positive integers n and all $W_n \in A^{S_n}$ (see II, §A) will be called S-operations. If A = G-modules (see I, §C), the S-operations generate what are known as λ -operations. If A = G-sets (see I, §B), the S-operations will be referred to as β -operations.

For $T \in A^G$, let $\langle T \rangle$ denote the subring of $K_0(A^G)$ generated by $\{ [\phi(T)] \mid \phi \text{ an } S\text{-operation} \}$. If there is a functor Hom as in Lemma II.11, then Theorem II.15 says that every element in $\langle T \rangle$ is a finite sum $\Sigma_{\alpha} q_{\alpha} [\phi_{\alpha}(T)]$, where $q_{\alpha} \in \mathbb{Z}$, ϕ_{α} an S-operation.

Summarizing, the ring $K_0(A^G)$ and subrings $P(A^G)$ and $\langle T \rangle$ have been constructed. The main theorem and its immediate corollary apply when $G = S_k$ and $T = X_k$:

MAIN THEOREM II.21. Let A have finite coproducts, coequalizers, a "tensor product" \bot , and an object 1. Assume there is a functor Hom as in Lemma II.11. Then for each positive integer k, $P(A^{S_k}) \subset \langle X_L \rangle$.

COROLLARY II.22. Same hypothesis as above. Suppose $P(A^{S_k}) = K_0(A^{S_k})$. Then $\langle X_k \rangle = K_0(A^{S_k})$.

LEMMA II.23. Same hypothesis as above. Let $H \subset S_n$ and $W_n = \operatorname{Ind}_H^{S_n} 1$. Then

$$\phi_{W_n}(X_k) = \coprod_{\gamma} \operatorname{Ind}_{H_{\gamma}}^{S_k} 1,$$

for some collection of subgroups H_{γ} of S_k . Here, $\gamma_1 \neq \gamma_2$ need not imply $H_{\gamma_1} \neq H_{\gamma_2}$.

This lemma does not imply $\langle X_k \rangle \subset P(A^{S_k})$, since $\langle X_k \rangle$ is obtained from all S-operations ϕ_{W_n} , and if $P(A^{S_n}) \neq K_0(A^{S_n})$, W_n need not be a linear combination of objects $\operatorname{Ind}_H^{S_n} 1$.

PROOF OF LEMMA. By Theorem II.12, $\phi_{W_n}(X_k) = (\operatorname{Res}_H^{S_n}(X_k^{\perp n}))_H$. Since

$$X_{K}^{\perp n} = \left(\prod_{j=1}^{k} 1_{j}\right)^{\perp n} \approx \prod_{\substack{(j_{1}, \dots, j_{n})\\1 \leq j_{i} \leq k}} \left(1_{j_{1}} \perp \dots \perp 1_{j_{n}}\right)$$
$$\approx \prod_{\substack{(j_{1}, \dots, j_{n})\\1 \leq i_{i} \leq k}} 1_{(j_{1}, \dots, j_{n})},$$

we have

(1)
$$\phi_{W_n}(X_k) = \left(\operatorname{Res}_H^{S_n} \left(\coprod_{1 \leq i_i \leq k} 1_{(i_1, \dots, i_n)} \right) \right)_H.$$

 $\sigma \in S_n$ acts on $\coprod 1_{(j_1, \dots, j_n)}$ by

$$\sigma: \ 1_{(j_1, \cdots, j_n)} \xrightarrow{1_1} 1_{(j_{\sigma^{-1}(1)}, \cdots, j_{\sigma^{-1}(n)})} \hookrightarrow \coprod 1_{(j_1, \cdots, j_n)},$$

and $g \in S_k$ by

$$g: \ 1_{(j_1, \cdots, j_n)} \xrightarrow{1_1} 1_{(g(j_1), \cdots, g(j_n))} \longrightarrow \coprod 1_{(j_1, \cdots, j_n)};$$

moreover, $\sigma g = g \sigma$: $\coprod 1_{(j_1, \dots, j_n)} \longrightarrow \coprod 1_{(j_1, \dots, j_n)}$.

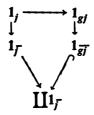
Let $J = \{(j_1, \dots, j_n) | 1 \le j_i \le k\}$. By the above, $H \subset S_n$ acts on the set J. For $j \in J$, let \overline{j} denote the orbit Hj. Using equation (1), it is not hard to show that $\phi_{W_n}(X_k) = \coprod_{H \text{-orbits } \overline{f}} 1_{\overline{f}}$, where $g \in S_k$ acts by $g \colon 1_{\overline{f}} \xrightarrow{1} 1_{\overline{f}}$ Let

$$\pi: \coprod_{i} 1_{j} \longrightarrow \coprod_{\bar{I}} 1_{\bar{I}}$$

be the map induced from $1_j \xrightarrow{1_1} 1_{f^-} \hookrightarrow \coprod_{f^-} 1_{f^-}$. It is straightforward to show that $(\coprod_{f^-} 1_{f^-}, \pi)$ satisfies the universal property defining $(\coprod_{j \in J} 1_j)_H$. Hence as an object in A, $\phi_{W_n}(X_k) = \coprod_{f^-} 1_{f^-}$. Since, for $g \in S_k$, $(\pi g)h = \pi hg = \pi g$: $\coprod 1_j \longrightarrow \coprod_{f^-}$ for all $h \in H$, there is a unique map $\coprod 1_f \xrightarrow{g} \coprod_{f^-} 1_{f^-}$ such that the diagram

$$\begin{array}{ccc}
\coprod_{j} 1_{j} & \xrightarrow{g} & \coprod 1_{j} \\
\pi \downarrow & & \downarrow \pi \\
\coprod 1_{j} & \xrightarrow{g} & \coprod 1_{j}
\end{array}$$

commutes, and hence is determined by the commutative diagram:



Thus $\phi_{W_{\vec{P}}}(X_k) = \coprod_{H\text{-orbits}f} \mathbf{1}_{\vec{f}}$, and S_k permutes the $\mathbf{1}_{\vec{f}}$'s by permuting the H-orbits \vec{f} . Therefore,

$$\phi_{W_n}(X_k) \approx \coprod_{f} 1_{f} \approx \coprod_{S_k \text{-orbits } \gamma} \left(\coprod_{f \in \gamma} 1_f \right) \approx \operatorname{Ind}_{H_{\gamma}}^{S_k} 1_{f_0}$$

(by Proposition II.7), where 1_{f_0} is one of the 1_f 's and H_{γ} is its isotropy group. \square

Let $H \subset S_k$ and m be a nonnegative integer. H is said to be divisible

by S_m if H is conjugate to $M \times S_m$ (as subgroups of S_k) for some subgroup M of S_{k-m} . Here, "H conjugate to $M \times S_0$ " means H is conjugate to some subgroup M of S_k ; "H conjugate to $M \times S_k$ " means H is conjugate to S_k . Clearly H is always divisible by S_0 .

PROOF OF MAIN THEOREM. It is enough to show that if $H \subset S_k$ is divisible by S_m for some m, $0 \le m \le k$, then $\operatorname{Ind}_H^{S_k} 1 \in \langle X_k \rangle$. The proof is by induction (backwards) on m:

- (i) If m = k, then $H = S_k$ and $\operatorname{Ind}_H^{S_k} 1 = 1_{S_k} = \phi_0(X_k) \in \langle X_k \rangle$.
- (ii) Suppose m < k and assume that if $m < m' \le k$, then H divisible by $S_{m'} \Rightarrow \operatorname{Ind}_H^{S_k} 1 \in \langle X_k \rangle$. Let H be divisible by S_m . Then $\operatorname{Ind}_H^{S_k} 1 = \operatorname{Ind}_{M \times S_m}^{S_k} 1$ for some $M \subset S_{k-m}$. Let $W_{k-m} = \operatorname{Ind}_M^{S_k-m} 1$. Lemma II.23 gives

$$\phi_{W_{k-m}}(X_k) = \coprod_{S_k \text{-orbits } \gamma} \left(\coprod_{\overline{f} \in \gamma} 1_{\overline{f}}\right) = \coprod_{\gamma} \operatorname{Ind}_{H_{\gamma}}^{S_k} 1.$$

Recall that $J = \{(j, \dots, j_{k-m}) | 1 \le j_i \le k\}$ is an S_k -set and an M-set, that S_k permutes the M-orbits j of J, and that γ runs through the S_k -orbits of the set of M-orbits of J.

Direct computation shows that the *M*-orbit $(\overline{1,\cdots,k-m})$, which is in some S_k -orbit γ_0 , has isotropy group $H_{\gamma_0}=M\times S_m$. Moreover, $(\overline{j_1,\cdots,j_{k-m}})\in\gamma_0$ whenever all the j_i 's are distinct, since S_k is (k-m)-fold transitive. Thus if $(\overline{j_1,\cdots,j_{k-m}})\in\gamma\neq\gamma_0$, $j_i=j_t$ for some $i\neq t$; hence its isotropy group H_{γ} is of the form $K\times S_{m'}$, for some m'>m and $K\subset S_{k-m}$. Since H_{γ} is divisible by $S_{m'}$, for some m'>m if $\gamma\neq\gamma_0$, $\mathrm{Ind}_{H_{\gamma}}^{S_k}1\in\langle X_k\rangle$ for all $\gamma\neq\gamma_0$ by induction hypothesis. Thus

$$\operatorname{Ind}_{H}^{S_{k}} 1 = \operatorname{Ind}_{M \times S_{m}}^{S_{k}} 1 = \phi_{W_{k-m}}(X_{k}) - \sum_{\gamma \neq \gamma_{0}} \operatorname{Ind}_{H}^{S_{k}} 1 \in \langle X_{k} \rangle.$$

The proof is completed by induction.□

III. Applications and Open Questions

A. Unigeneration of the λ -ring $R(S_k)$. It is well known that $R(S_k)$ is a free Z-module with basis $\{\operatorname{Ind}_{S_{k_1}\times S_{k_2}\times\cdots S_{k_s}}^{S_k}1|\ k_i\geq 1,\ \Sigma_i\,k_i=k\}$ [5, Chapter III]. Therefore, $P(A^{S_k})=K_0$ (A^{S_k}) = $R(S_k)$, where A=finite-dimensional vector spaces over C. Corollary II.22 now implies $R(S_k)=\langle X_k\rangle$, and Theorem II.15 gives that every element of $R(S_k)$ is a linear combination of $\{[\phi(X_k)]|\ \phi$ an S-operation}.

Moreover, every S-operation is a linear combination of symmetric power operations:

$$W_n \in R(S_n) \Rightarrow [W_n] = [W'_n] - [W''_n],$$

where

$$W'_n = \sum \alpha_{\mu} \operatorname{Ind}_{S_{\mu_1} \times \cdots \times S_{\mu_s}}^{S_n} 1, \quad W''_n = \sum \beta_{\nu} \operatorname{Ind}_{S_{\nu_1} \times \cdots \times S_{\nu_t}}^{S_n} 1,$$

with α_{μ} , β_{ν} positive integers.

$$[W'_n] = [W_n] + [W''_n] = [W_n \coprod W'_n] \Rightarrow W'_n \cong W_n \coprod W''_n \qquad \text{(See Remark II.17)}$$

$$\Rightarrow \phi_{W'_n}(T) = \phi_{W_n}(T) \coprod \phi_{W''_n}(T) \text{ (by Theorem II.9)}$$

$$\Rightarrow [\phi_{W_n}(T)] = [\phi_{W'_n}(T)] \coprod [\phi_{W''_n}(T)].$$

Since

$$\operatorname{Ind}_{S_{n_1} \times S_{n_2}}^{S_n} 1 = \operatorname{Ind}_{S_{n_1} \times S_{n_2}}^{S_n} (1 \otimes 1),$$

etc., Theorem II.15 implies $\phi_{W_n}(T)$ is a linear combination of $\{h_{n_1}(T) \otimes h_{n_2}(T) \otimes \cdots \otimes h_{n_s}(T) | n_i \geq 0\}$, where $h_0 = \phi_0$, and $h_n = \phi_{W_n}$ for n > 0 and $W_n = \operatorname{Ind}_{S_n}^{S_n} 1$. The h_i 's are, of course, symmetric power operations (see Example II.13(ii)).

Combining the two paragraphs above, one obtains the result that every element of $R(S_k)$ is a linear combination of $\{h_{n_1}(X_k)\otimes\cdots\otimes h_{n_s}(X_k)|n_i\geqslant 0\}$. Thus $R(S_k)$ is generated by the single element X_k if symmetric powers are included with the standard ring operations. Since λ -operations generate symmetric power operations [2], [5], X_k generates $R(S_k)$ as a λ -ring.

REMARK III.1. Although $R(S_k)$ is unigenerated as a λ -ring, it is not unigenerated as a ring, i.e., $R(S_k) \neq \mathbb{Z}[T]$ for all $T \in R(S_k)$. The first counterexample is $R(S_k)$:

If $R(S_4) = \mathbb{Z}[T]$, then the ring $\mathbb{Z}/2 \otimes_{\mathbb{Z}} R(S_4)$ is unigenerated as a $\mathbb{Z}/2$ -module. Since $R(S_4)$ is a free Z-module of rank 5 (see Proposition I.9), $\mathbb{Z}/2 \otimes_{\mathbb{Z}} R(S_4)$ is a free $\mathbb{Z}/2$ -module of rank 5. By writing out its multiplication table $(\mathbb{Z}/2 \otimes_{\mathbb{Z}} R(S_4))$ has only 2^5 elements), one can show that no element generates all of $\mathbb{Z}/2 \otimes_{\mathbb{Z}} R(S_4)$.

B. A unigeneration theorem for $B(S_k)$. B(G) is a free Z-module with basis $\{G/H_{\alpha}\}$, where $\{H_{\alpha}\}=$ a set of representatives of the conjugacy classes of subgroups of G (Proposition I.5). Clearly, if A= finite sets, then $\mathrm{Ind}_H^G 1=$ the G-set G/H (see Proposition II.18). Thus $P(A^G)=K_0(A^G)=B(G)$. Hence Corollary II.22 implies that $B(S_k)=\langle X_k\rangle$. Thus S-operations (here called " β -operations") applied to X_k generate all of $B(S_k)$.

REMARK III.2. $B(S_k)$ is not, in general, generated by one element as a ring, since the ring homomorphism $B(G) \longrightarrow R(G)$ defined by $T \longmapsto$ vector

space with basis $\{v_t\}_{t\in T}$ (see Examples I.6(ii), (ii')) is onto if $G=S_k$ [5, Chapter III], and therefore the ring $B(S_4)$ is not unigenerated since $R(S_4)$ is not (see Remark III.1).

REMARK III.3. Applying sums and products of symmetric power operations h_n to X_k does not, in general, give all of $B(S_k)$. $B(S_3)$ is a counterexample:

The nonconjugate subgroups of S_3 are 1, $S_1 \times S_2$, S_3 and A_3 (= the even permutations in S_3). Proposition I.5 now says that $B(S_3)$ is a free **Z**-module with basis $S_3/1$, $S_3/S_1 \times S_2$, S_3/S_3 , S_3/A_3 . Note that $S_3/S_1 \times S_2 = X_3$ (see Proposition II.19) and $S_3/S_3 = 1$. $B(S_3)$ is now completely described by the following multiplication table, which is obtained easily by direct calculation using Propositions I.2, I.3, and I.4:

	1	S_3/A_3	<i>X</i> ₃	$S_3/1$
1	1	S_3/A_3	<i>X</i> ₃	S ₃ /1
S_3/A_3	S_3/A_3	2S ₃ /A ₃	S ₃ /1	2S ₃ /1
<i>X</i> ₃	<i>X</i> ₃	S ₃ /1	$S_3/1 + X_3$	3S ₃ /1
S ₃ /1	S ₃ /1	2S ₃ /1	3S ₃ /1	6S ₃ /1

Now suppose that the symmetric power operations h_n applied to X_3 give all of $B(S_3)$. Then, in particular, S_3/A_3 could be expressed as a finite sum

$$\sum a_{i_1...s} h_{n_{i_1}}(X_3) h_{n_{i_2}}(X_3) \cdots h_{n_{i_s}}(X_3)$$
, where $a_{i_1...s} \in \mathbb{Z}$.

From the multiplication table, it is clear that one of the $h_n(X_3)$'s above must be of the form $n_1 1 + n_2 S_3/A_3 + n_3 X_3 + n_4 S_3/1$, with $n_2 \neq 0$. But for all $n \geq 0$, $h_n(X_3) = n_1 1 + n_3 X_3 + n_4 S_3/1$ for some $n_i \in \mathbb{Z}$: An element (x_1, x_2, \cdots, x_n) in an S_n -orbit of X_3^n is made up of μ_1 1's, μ_2 2's, μ_3 3's, where $\mu_1 + \mu_2 + \mu_3 = n$, and the 3-tuple (μ_1, μ_2, μ_3) uniquely determines the S_n -orbit. If the μ_i 's are all different, then the S_3 -orbit of $(X_3^n)_{S_n}$ which contains the S_n -orbit corresponding to (μ_1, μ_2, μ_3) is $S_3/1$. If exactly two of the μ_i 's are the same, then the S_3 -orbit is $S_3/S_1 \times S_2$. If $\mu_1 = \mu_2 = \mu_3$, then the S_3 -orbit is S_3/S_3 . Therefore, S_3/A_3 never arises.

Thus $B(S_k)$ is generated by X_k if all the β -operations are used, but is, in general, not generated by X_k if only symmetric power operations are used. Hence β -operations include, but are not the same as, symmetric powers.

C. Some open questions. Since the S-operations in the linear representation theory case are generated by symmetric power operations (see III, $\S A$), which are defined on all of R(G) (see I, $\S C$), S-operations extend to operations on R(G), thus making R(G) a " λ -ring". The unigeneration of $R(S_k)$ can be phrased:

There is an onto "λ-ring homomorphism"

$$\Lambda \longrightarrow R(S_k), \quad a_1 \longmapsto X_k,$$

where Λ is the "free λ -ring on one generator" $a_1 \in \Lambda$. Hence $R(S_k) \cong \Lambda/I$, for some λ -ideal I. A reasonable description of this λ -ideal, in particular, a canonical set of generators, is unknown.

In the case of permutation representations, i.e., G-sets, the corresponding theory of " β -ring" which would allow extending the β -operations to all of B(G) is not known.

REFERENCES

- 1. M. Atiyah, Power operations in K-theory, Quart. J. Math. Oxford Ser. (2) 17 (1966), 165-193. MR 34 #2004.
- 2. M. Atiyah and D. O. Tall, Group representations, λ -rings, and the J-homomorphism, Topology 8 (1969), 253-297. MR 39 #5702.
 - 3. H. Bass, Algebraic K-theory, Benjamin, New York 1968. MR 40 #2736.
- 4. A. Dress, Representations of finite groups. 1. The Burnside ring (mimeographed notes, Bielefeld, 1971).
- 5. D. Knutson, λ-rings and the representation theory of the symmetric group, Lecture Notes in Math., vol. 308, Springer-Verlag, Berlin and New York, 1973.
 - 6. B. Mitchell, Theory of categories, Academic Press, New York, 1965. MR 34 #2647.
- 7. N. Saavedra Rivano, Categories Tannakiennes, Lecture Notes in Math., vol. 265, Springer-Verlag, Berlin and New York, 1972.
- 8. J.-P. Serre, Representations linéaires des groupes finis, Hermann, Paris, 1967. MR 38 #1190.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104